Η διαίρεση με το μηδέν δεν πρόκειται να επιστρέψει αριθμητικό αποτελέσματα σε κανέναν υπολογιστή, γιατί απλά δεν ορίζεται - δεν υπάρχει αριθμός που να πολλαπλασιάζεται με το μηδέν και το αποτέλεσμα να μην είναι μηδέν. Δείτε όμως τι γίνεται αν επιχειρήσουμε τη διαίρεση με το μηδέν σε ένα μηχανικό κομπιουτεράκι.
Για να βλέπεις ΟΠΟΙΑ ταινία και σειρά θέλεις ΟΤΑΝ θέλεις, σε Ελλάδα ή εξωτερικό, και για απόλυτη ασφάλεια και ανωνυμία, βάλε Cyberghost μόνο με $2,75 το μήνα:
Δείτε τις ενότητες του οδηγού:
Τι είναι ένα μηχανικό κομπιουτεράκι
Όλα τα σημερινά κομπιουτεράκια βασίζουν τη λειτουργία τους σε μικροτσίπ. Από τεχνικής άποψης, είναι πλήρεις υπολογιστές, με στοιχειώδη επεξεργαστή, μνήμη RAM, και ένα σετ από εντολές που μπορούν να εκτελέσουν.
Όμως δεν ήταν ανέκαθεν έτσι. Πριν τα κυκλώματα και τα μικροτσίπ, τα πρώτα κομπιουτεράκια ήταν μηχανικά.
Ένα μηχανικό κομπιουτεράκι δεν έχει επεξεργαστή και μικροτσίπ, αλλά χρησιμοποιεί περίπλοκους συνδυασμούς από γρανάζια για όλες τις πράξεις.
Αν αναρωτιέστε πως γίνεται αυτό, γνωρίζετε Αγγλικά, και έχετε 40 λεπτά στη διάθεσή σας, το παρακάτω ντοκιμαντέρ εξηγεί με πλήρη λεπτομέρεια, και με απλή, καθαρή γλώσσα, πώς λειτουργεί ένα μηχανικό κομπιουτεράκι για όλες τις βασικές πράξεις.
Τι συμβαίνει όταν κάνουμε διαίρεση με το μηδέν σε ένα μηχανικό κομπιουτεράκι
Εκεί λοιπόν που ένα σύγχρονο κομπιουτεράκι θα βγάλει ένα απλό μήνυμα σφάλματος, δείτε τι κάνει η διαίρεση με το μηδέν σε ένα μηχανικό κομπιουτεράκι.
Για ποιο λόγο όμως κάνει έτσι σαν παλαβό?
Η απάντηση είναι αρκετά απλή. Κατά βάση, ο πολλαπλασιασμός είναι μια σειρά από προσθέσεις, και αντίστοιχα η διαίρεση είναι μια σειρά από αφαιρέσεις.
Όταν διαιρούμε πχ 30 / 5, αρκεί να υπολογίσουμε:
30-5=25
25-5=20
20-5=15
15-5=10
10-5=5
5-5=0
Χρειάστηκαν έξι βήματα για να φτάσουμε στο μηδέν, άρα η απάντηση είναι 6. Απλούστατο.
Αν όμως χρησιμοποιήσουμε την ίδια μέθοδο για να διαιρέσουμε με το μηδέν, εκεί έχουμε πρόβλημα:
30-0=30
30-0=30
30-0=30
30-0=30
30-0=30
30-0=30
30-0=30
30-0=30
30-0=30
κλπ επ' απειρον.
Δεν μπορούμε να γνωρίζουμε αν το Facit ESA-01 του βίντεο ακολουθεί αυτή ακριβώς τη μέθοδο για τη διαίρεση, ή κάποια παρόμοια, όμως από τη στιγμή που η διαίρεση με το μηδέν το κάνει να λειτουργεί ασταμάτητα, είναι ένα μάλλον ασφαλές συμπέρασμα.
Προφανώς οι μηχανικοί που το σχεδίασαν βρήκαν υπερβολικά περίπλοκο το να προσθέσουν κάποια δικλείδα ασφαλείας στην περίπτωση που κάποιος, καταλάθος ή εσκεμμένα, διαιρέσει με το μηδέν.
Έχετε δει ποτέ από κοντά μηχανικό κομπιουτεράκι?
Δεν ξέρουμε για εσάς, αλλά εμάς μας συναρπάζουν τέτοιες συσκευές, που παρά το γεγονός ότι δεν χρησιμοποιούν σύγχρονη τεχνολογία, δεν παύουν να είναι θαύματα μηχανικής. Σε παλαιότερο οδηγό είχαμε δει το πρώτο παιχνίδι υπολογιστή, που στην πραγματικότητα είναι ένα ρομποτικό σκάκι που δημιουργήθηκε το 1912.
Γνωρίζετε άλλες τέτοιες προχωρημένες συσκευές από το παρελθόν, που πιστεύετε πως αξίζουν για παρουσίαση στο PCsteps? Γράψτε μας στα σχόλια.
Σχετικές Δημοσιεύσεις
- Θα Τελειώσουν Ποτέ οι Διευθύνσεις YouTube?
- Παιχνίδι Basket στο Facebook Messenger για Android και iOS
- Δευτέρα Λήγει ο Διαγωνισμός Bitdefender Family Pack 2019
- DIYsteps #7: Πώς Επισκευάζω Ένα Χαλασμένο Καλώδιο
- Τα Καλύτερα Βίντεο του Μήνα στο Κανάλι του PCsteps - 03/2018
Τα νεότερα βίντεο του PCsteps






Υποστηρίξτε τη λειτουργία του PCsteps
Θέλετε να υποστηρίξετε το PCsteps στη λειτουργία του, για να δημοσιεύουμε καθημερινά υψηλής ποιότητας οδηγούς και βίντεο σχετικά με την τεχνολογία?
Μπορείτε να κάνετε ένα like στη σελίδα μας στο Facebook, να μοιραστείτε τον οδηγό με τους φίλους σας, και να επιλέξετε τις φιλικές μας επιχειρήσεις για τις ηλεκτρονικές σας αγορές, από τους παρακάτω συνδέσμους:
Με κάθε σας αγορά, και χωρίς να χρεώνεστε τίποτα επιπλέον, το site μας θα παίρνει μια πολύ μικρή προμήθεια, η οποία είναι σημαντική βοήθεια για την κάλυψη των λειτουργικών εξόδων και τις αμοιβές των συνεργατών.
Αν προτιμάτε αγορές από την Κίνα, για να πετύχετε καλύτερες τιμές, συνεργαζόμαστε με τα μεγαλύτερα κινέζικα e-shop:
Δείτε τι να προσέχετε στις αγορές από Κίνα για να αποφύγετε το τελωνείο, καθώς και πώς μπορεί το PCsteps να μεσολαβήσει για εσάς αν έχετε οποιοδήποτε πρόβλημα με αγορά από το GearBest, εφόσον έχετε χρησιμοποιήσει το δικό μας σύνδεσμο για την αγορά σας.
Για την πλήρη προστασία όλων σας των συσκευών με Windows, Android, iOS, και MacOS, το PCsteps εμπιστεύεται, χρησιμοποιεί, και προτείνει τα προϊόντα ασφαλείας της Bitdefender.
Μάλιστα, μπορείτε σε αποκλειστικότητα να δοκιμάσετε το Bitdefender Internet Security δωρεάν για 90 ημέρες.
Φέρτε μας πίσω το pcsteps.
Πολύ καλό!!!!
ΦΕΡΤΕ ΜΑΣ ΠΙΣΩ ΤΟ PCSTEPS.
καποτε ειχα ρωτησει ενα καθηγητη μου οτι αν πεταξουμε ενα μπαλακι σε ενα τοιχο η αποσταση θα μειωνεται συνεχεια δλδ 2 μετρα, 1 μετρο, 0,5 μετρα, 0,00000000001 μετρα κτλ επ απαπειρον. κι ομως ενω θεωρητικα μπορει να ειναι απειρος ο αριθμος δλδ να μη μηδενιστει ποτε , παραυτα μηδενιζεται , αφου το μπαλακι χτυπαει το τοιχο . 2 αντιφατικα πραγματα που ομως ισχυουν και τα 2 αν και ειναι αντθετα.
Ουσιαστικά αυτό καλύπτουν τα παράδοξα του Ζήνωνα
https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%AC%CE%B4%CE%BF%CE%BE%CE%B1_%CF%84%CE%BF%CF%85_%CE%96%CE%AE%CE%BD%CF%89%CE%BD%CE%B1
Όντως έχουν πολύ ενδιαφέρον τέτοιες παλιές τεχνολογίες.
α ωραιο λινκ, η μονη ισως απαβτηση που νπορω να δωσω σε αυτο ειναι οτι πχ το μικροτερο σωματιδιο υλης θα εχει ας πουμε 0,00000000000000000000000000000000000000000000000000001 μικροχιλιοστα ξερω γω που σημαινει οτι οτι οτιδηποτε μικροτερο απο αυτο δεν εχει νοημα για την υλη γιατι δε μπορει να υπαρξει υλη, ομως οι αριθμοι παραμενουν απειροι απλα δεν αντιπροσωπευουν τπτ οσον αφορα την υλη. μετα μπαινει ενα ςερωτημα μηπως τελικα η διασπαση του ατομου ειναι το να ακουμπας ακριβως αυτο το μικροτερο σωματιδιο υλης ετσι ωστε να γινεται πυρηνηκη εκρηξη . τωρα αυτο το λεω υποθετικα χαρην κουβεντας δεν εχω μελετησει τα πυρηνικα 🙂
ΦΕΡΤΕ ΠΙΣΩ ΤΟ PCSTEPS.
Με είχε εντυπωσιάσει όταν ημουν μικρός ένας γερος γνωστός για τις πατέντες του ( πρώτη γενητρια ρεύματος στο χωριο , πρώτος πειρατικός ραδιοφωνικός σταθμός κλπ) ο οποίος όταν οι άλλοι χρησιμοποιούσαν κομπιουτεράκια αυτό χρησιμοποιούσε κάτι ξύλινους χάρακες ... για πολλαπλασιασμούς .
Πολύ αργότερα έμαθα ότι αυτός ο συνδιασμός από χάρακες λέγεται λογαριθμικός κανόνας και ουσιαστικά χρησιμοποιεί την ιδιότητα των λογαρίθμων : " ο λογαριθμος του γινομενου είναι το αθροισμα των λογαριθμων "
Θεωρώ πολύ προχωρημένο αυτό το "μηχανικό κομπιουτεράκι"